

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(2,4-Dichlorophenyl)-2-oxo-1oxaspiro[4.5]dec-3-en-4-yl 2-methylprop-2-enoate

Fan-rui Kong,* Qiang Wang and Liang-zhong Xu

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: farykong@163.com

Received 3 April 2012; accepted 15 April 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.092; data-to-parameter ratio = 19.3.

In the title molecule, C19H18Cl2O4, the cyclohexane ring adopts a chair conformation. The furan ring is essentially planar and forms a dihedral angle of $82.1(1)^{\circ}$ with the benzene ring. In the crystal, weak $C-H \cdots O$ interactions are present.

Related literature

For the potential biological activity of the title compound and the crystal structures of related compounds, see: Bretschneider et al. (2003). For the synthesis, see: Lu et al. (2008).

17672 measured reflections

 $R_{\rm int} = 0.034$

4371 independent reflections

3362 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

V = 1834.3 (3) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.37 \text{ mm}^{-1}$
$T = 113 { m K}$
$0.22 \times 0.20 \times 0.14 \text{ mm}$

Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.922, T_{\max} = 0.950$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 227 parameters $wR(F^2) = 0.092$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ 4371 reflections

Table 1

Hydrogen-bond geometry (Å, °).

7) 133
7) 156
1 1

metry codes: (i) -x, -y + 1, -z + 2; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5451).

References

Bretschneider, T., Benet-Buchholz, J., Fischer, R. & Nauen, R. (2003). Chimia, 57, 697-701.

Lu, Y., Tao, J. Z. & Zhang, Z. R. (2008). Chem. Intermed. 10, 25-28. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o1531 [doi:10.1107/S1600536812016340]

3-(2,4-Dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl 2-methylprop-2enoate

Fan-rui Kong, Qiang Wang and Liang-zhong Xu

Comment

The title compound (I) was synthesized as a new compound with potential biological activity (Bretschneider *et al.*, 2003). We report herein its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Bretschneider *et al.*, 2003). The cyclohexane ring (C4—C9) adopts a chair conformation. The furan ring (O2/C1-C4) plane forms a dihedral angle of 82.1 (1)° with the benzene ring (C10—C15). In the crystal, weak intermolecular C—H···O hydrogen bonds are present.

Experimental

The synthesis followed the prodedure of Lu *et al.* (2008). In a flask equipped with stirrer and reflux condenser, 3-(2,4-dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-ene-4-ol 3.13 g (10.0 mmol), and triethylamine 5 ml was mixed in dichloromethane (30 ml), at 273-278K. The mixture was stirred, then methacryloyl chloride 1.25g (12.0 mmol) for was added dropwise for 1h, then the mixtures was left at room temperature for 3 h. The mixture was then washed with 1% HCl (60 ml) and water (60 ml), and the organic layer was dried over sodium sulfate. Excess dichloromethane was removed on a water vacuum pump to obtain an oily colorless product. The product was crystallized from methanol to afford the title compound 3.39 g (89% yield). Single crystals suitable for X-ray measurements were obtained from a solution of the title compound in acetone and methanol at room temperature.

Refinement

H atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl C atoms.

Computing details

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear* (Rigaku, 2005); data reduction: *CrystalClear* (Rigaku, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

F(000) = 792 $D_x = 1.381 \text{ Mg m}^{-3}$

 $\theta = 1.4 - 28.1^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 113 KPrism, colorless $0.22\times0.20\times0.14~mm$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 6104 reflections

Figure 1

View of the title compound with displacement ellipsoids drawn at the 40% probability level.

3-(2,4-Dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl 2-methylprop-2-enoate

Crystal data
$C_{19}H_{18}Cl_2O_4$
$M_r = 381.23$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 10.759 (1) Å
<i>b</i> = 11.8778 (11) Å
c = 15.0130 (15) Å
$\beta = 107.047 (4)^{\circ}$
V = 1834.3 (3) Å ³
Z=4

Data collection

17672 measured reflections
4371 independent reflections
3362 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.034$
$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
$h = -13 \rightarrow 14$
$k = -14 \rightarrow 15$
$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.03	H-atom parameters constrained
4371 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0557P)^2]$
227 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.51046 (3)	0.62323 (3)	1.13695 (2)	0.02998 (11)
C12	0.37184 (4)	0.19570 (3)	1.04198 (3)	0.03410 (12)
01	0.00843 (9)	0.29580 (7)	1.08091 (6)	0.0212 (2)
O2	-0.07870 (8)	0.18353 (7)	0.95872 (6)	0.01666 (19)
O3	0.10997 (9)	0.21926 (8)	0.80025 (7)	0.0243 (2)
O4	0.10974 (10)	0.40685 (8)	0.77325 (7)	0.0279 (2)
C1	0.00933 (12)	0.26065 (10)	1.00566 (9)	0.0162 (3)
C2	0.09833 (12)	0.28979 (10)	0.95101 (9)	0.0174 (3)
C3	0.05816 (13)	0.23083 (10)	0.87256 (9)	0.0182 (3)
C4	-0.06139 (12)	0.16271 (10)	0.86751 (8)	0.0159 (3)
C5	-0.18169 (13)	0.20806 (10)	0.79466 (9)	0.0202 (3)
H5A	-0.1945	0.2881	0.8082	0.024*
H5B	-0.1682	0.2040	0.7323	0.024*
C6	-0.30301 (13)	0.14107 (11)	0.79411 (10)	0.0234 (3)
H6A	-0.3215	0.1509	0.8545	0.028*
H6B	-0.3785	0.1700	0.7443	0.028*
C7	-0.28405 (14)	0.01632 (11)	0.77779 (10)	0.0252 (3)
H7A	-0.3627	-0.0260	0.7794	0.030*
H7B	-0.2720	0.0060	0.7154	0.030*
C8	-0.16622 (14)	-0.02997 (11)	0.85182 (10)	0.0239 (3)
H8A	-0.1534	-0.1099	0.8379	0.029*
H8B	-0.1826	-0.0268	0.9133	0.029*
C9	-0.04271 (13)	0.03628 (10)	0.85624 (9)	0.0194 (3)
H9A	-0.0183	0.0230	0.7984	0.023*
H9B	0.0293	0.0089	0.9094	0.023*
C10	0.20514 (12)	0.37111 (10)	0.98884 (9)	0.0176 (3)

C11	0.17792 (13)	0.48609 (11)	0.98462 (9)	0.0213 (3)
H11	0.0932	0.5114	0.9514	0.026*
C12	0.27197 (13)	0.56429 (11)	1.02792 (9)	0.0223 (3)
H12	0.2523	0.6424	1.0241	0.027*
C13	0.39456 (13)	0.52694 (11)	1.07668 (9)	0.0211 (3)
C14	0.42685 (13)	0.41434 (11)	1.08054 (10)	0.0225 (3)
H14	0.5123	0.3898	1.1127	0.027*
C15	0.33101 (13)	0.33740 (11)	1.03600 (9)	0.0205 (3)
C16	0.14479 (13)	0.31519 (11)	0.75941 (9)	0.0208 (3)
C17	0.22568 (13)	0.28559 (12)	0.69809 (9)	0.0243 (3)
C18	0.28787 (15)	0.18689 (13)	0.70703 (12)	0.0344 (4)
H18A	0.2806	0.1346	0.7531	0.041*
H18B	0.3394	0.1690	0.6673	0.041*
C19	0.23706 (16)	0.37669 (14)	0.63240 (11)	0.0375 (4)
H19A	0.2959	0.3523	0.5972	0.056*
H19B	0.2716	0.4449	0.6677	0.056*
H19C	0.1511	0.3926	0.5892	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02639 (19)	0.0348 (2)	0.02668 (19)	-0.01427 (15)	0.00461 (15)	-0.00520 (14)
Cl2	0.02374 (19)	0.02107 (19)	0.0554 (3)	0.00275 (13)	0.00842 (18)	0.00714 (15)
01	0.0225 (5)	0.0261 (5)	0.0155 (5)	-0.0015 (4)	0.0066 (4)	-0.0027 (4)
O2	0.0173 (4)	0.0202 (4)	0.0135 (4)	-0.0023 (3)	0.0061 (4)	-0.0013 (3)
O3	0.0303 (5)	0.0248 (5)	0.0243 (5)	-0.0074 (4)	0.0182 (4)	-0.0054 (4)
O4	0.0303 (6)	0.0293 (5)	0.0268 (5)	0.0020 (4)	0.0127 (5)	0.0018 (4)
C1	0.0153 (6)	0.0157 (6)	0.0174 (6)	0.0022 (5)	0.0043 (5)	0.0021 (5)
C2	0.0163 (6)	0.0183 (6)	0.0184 (6)	0.0002 (5)	0.0064 (5)	0.0008 (5)
C3	0.0198 (6)	0.0181 (6)	0.0193 (6)	-0.0007 (5)	0.0100 (5)	-0.0001 (5)
C4	0.0184 (6)	0.0180 (6)	0.0131 (6)	-0.0013 (5)	0.0073 (5)	-0.0007 (5)
C5	0.0244 (7)	0.0189 (6)	0.0162 (6)	0.0027 (5)	0.0041 (5)	0.0018 (5)
C6	0.0173 (6)	0.0295 (7)	0.0205 (7)	0.0027 (5)	0.0010 (5)	0.0002 (5)
C7	0.0225 (7)	0.0275 (7)	0.0236 (7)	-0.0063 (6)	0.0036 (6)	-0.0028 (6)
C8	0.0260 (7)	0.0177 (6)	0.0268 (7)	-0.0038 (5)	0.0061 (6)	-0.0008 (5)
C9	0.0197 (6)	0.0177 (6)	0.0208 (7)	0.0011 (5)	0.0060 (5)	-0.0013 (5)
C10	0.0169 (6)	0.0216 (6)	0.0153 (6)	-0.0021 (5)	0.0064 (5)	-0.0009 (5)
C11	0.0185 (6)	0.0227 (7)	0.0218 (7)	-0.0004 (5)	0.0047 (5)	-0.0011 (5)
C12	0.0243 (7)	0.0199 (7)	0.0237 (7)	-0.0025 (5)	0.0085 (6)	-0.0032 (5)
C13	0.0204 (6)	0.0261 (7)	0.0172 (6)	-0.0087 (5)	0.0061 (5)	-0.0030 (5)
C14	0.0156 (6)	0.0283 (7)	0.0228 (7)	-0.0028 (5)	0.0044 (5)	0.0045 (5)
C15	0.0205 (7)	0.0204 (6)	0.0220 (7)	-0.0001 (5)	0.0087 (6)	0.0039 (5)
C16	0.0171 (6)	0.0276 (7)	0.0178 (6)	-0.0063 (5)	0.0051 (5)	-0.0015 (5)
C17	0.0203 (7)	0.0358 (8)	0.0185 (7)	-0.0114 (6)	0.0082 (6)	-0.0080 (6)
C18	0.0284 (8)	0.0465 (9)	0.0350 (9)	-0.0084 (7)	0.0195 (7)	-0.0147 (7)
C19	0.0334 (9)	0.0564 (10)	0.0272 (8)	-0.0130 (8)	0.0160 (7)	-0.0021 (7)

Geometric parameters (Å, °)

Cl1—C13	1.7378 (13)	C8—C9	1.5291 (18)
Cl2—C15	1.7351 (13)	C8—H8A	0.9900
01—C1	1.2071 (15)	C8—H8B	0.9900
O2—C1	1.3570 (15)	С9—Н9А	0.9900
O2—C4	1.4562 (14)	С9—Н9В	0.9900
O3—C3	1.3649 (15)	C10—C15	1.3904 (18)
O3—C16	1.3962 (16)	C10—C11	1.3943 (19)
O4—C16	1.1902 (16)	C11—C12	1.3870 (18)
C1—C2	1.4734 (17)	C11—H11	0.9500
C2—C3	1.3289 (18)	C12—C13	1.3807 (19)
C2—C10	1.4810 (17)	C12—H12	0.9500
C3—C4	1.5025 (17)	C13—C14	1.3789 (19)
C4—C5	1.5270 (18)	C14—C15	1.3933 (19)
C4—C9	1.5310 (17)	C14—H14	0.9500
С5—С6	1.5265 (18)	C16—C17	1.4827 (18)
C5—H5A	0.9900	C17—C18	1.337 (2)
С5—Н5В	0.9900	C17—C19	1.493 (2)
C6—C7	1.5253 (19)	C18—H18A	0.9500
С6—Н6А	0.9900	C18—H18B	0.9500
С6—Н6В	0.9900	C19—H19A	0.9800
C7—C8	1.523 (2)	C19—H19B	0.9800
С7—Н7А	0.9900	C19—H19C	0.9800
C7—H7B	0.9900		
C1—O2—C4	109.93 (9)	H8A—C8—H8B	107.9
C3—O3—C16	119.46 (10)	C8—C9—C4	111.66 (10)
01—C1—O2	121.58 (11)	С8—С9—Н9А	109.3
O1—C1—C2	128.67 (12)	C4—C9—H9A	109.3
O2—C1—C2	109.75 (10)	C8—C9—H9B	109.3
C3—C2—C1	105.91 (11)	C4—C9—H9B	109.3
C3—C2—C10	134.25 (12)	H9A—C9—H9B	108.0
C1—C2—C10	119.83 (11)	C15—C10—C11	117.74 (12)
C2—C3—O3	130.95 (12)	C15—C10—C2	122.54 (11)
C2—C3—C4	112.32 (11)	C11—C10—C2	119.49 (12)
O3—C3—C4	116.67 (11)	C12—C11—C10	121.34 (13)
O2—C4—C3	101.81 (10)	C12—C11—H11	119.3
O2—C4—C5	107.36 (10)	C10-C11-H11	119.3
C3—C4—C5	112.30 (10)	C13—C12—C11	119.05 (12)
O2—C4—C9	109.13 (10)	C13—C12—H12	120.5
C3—C4—C9	113.30 (10)	C11—C12—H12	120.5
C5—C4—C9	112.21 (10)	C14—C13—C12	121.58 (12)
C6—C5—C4	111.34 (10)	C14—C13—C11	118.88 (11)
С6—С5—Н5А	109.4	C12—C13—C11	119.52 (10)
C4—C5—H5A	109.4	C13—C14—C15	118.31 (13)
С6—С5—Н5В	109.4	C13—C14—H14	120.8
C4—C5—H5B	109.4	C15—C14—H14	120.8
Н5А—С5—Н5В	108.0	C10-C15-C14	121.92 (12)
C7—C6—C5	110.66 (11)	C10—C15—Cl2	119.98 (10)
			× /

С7—С6—Н6А	109.5	C14—C15—Cl2	118.09 (10)
С5—С6—Н6А	109.5	O4—C16—O3	122.02 (12)
С7—С6—Н6В	109.5	O4—C16—C17	126.80 (12)
С5—С6—Н6В	109.5	O3—C16—C17	111.16 (11)
H6A—C6—H6B	108.1	C18—C17—C16	120.88 (13)
C8—C7—C6	110.82 (11)	C18—C17—C19	124.49 (13)
С8—С7—Н7А	109.5	C16—C17—C19	114.52 (13)
С6—С7—Н7А	109.5	C17—C18—H18A	120.0
С8—С7—Н7В	109.5	C17—C18—H18B	120.0
С6—С7—Н7В	109.5	H18A—C18—H18B	120.0
H7A—C7—H7B	108.1	C17—C19—H19A	109.5
C7—C8—C9	111.89 (11)	C17—C19—H19B	109.5
C7—C8—H8A	109.2	H19A—C19—H19B	109.5
С9—С8—Н8А	109.2	С17—С19—Н19С	109.5
C7—C8—H8B	109.2	H19A—C19—H19C	109.5
С9—С8—Н8В	109.2	H19B—C19—H19C	109.5
C4—O2—C1—O1	175.71 (11)	C7—C8—C9—C4	52.98 (15)
C4—O2—C1—C2	-4.42 (13)	O2—C4—C9—C8	67.09 (14)
O1—C1—C2—C3	-178.77 (13)	C3—C4—C9—C8	179.75 (11)
O2—C1—C2—C3	1.38 (14)	C5—C4—C9—C8	-51.77 (14)
O1—C1—C2—C10	1.1 (2)	C3—C2—C10—C15	-84.2 (2)
O2-C1-C2-C10	-178.79 (10)	C1—C2—C10—C15	95.97 (15)
C1—C2—C3—O3	-174.75 (13)	C3—C2—C10—C11	101.37 (18)
C10—C2—C3—O3	5.4 (3)	C1—C2—C10—C11	-78.41 (16)
C1—C2—C3—C4	2.16 (15)	C15-C10-C11-C12	-1.63 (19)
C10-C2-C3-C4	-177.64 (13)	C2-C10-C11-C12	173.02 (12)
C16—O3—C3—C2	-50.0 (2)	C10-C11-C12-C13	-0.5 (2)
C16—O3—C3—C4	133.19 (12)	C11—C12—C13—C14	2.3 (2)
C1—O2—C4—C3	5.30 (12)	C11—C12—C13—Cl1	-176.24 (10)
C1—O2—C4—C5	-112.83 (10)	C12-C13-C14-C15	-1.9 (2)
C1—O2—C4—C9	125.32 (10)	Cl1—C13—C14—C15	176.66 (10)
C2—C3—C4—O2	-4.59 (14)	C11-C10-C15-C14	2.05 (19)
O3—C3—C4—O2	172.81 (10)	C2-C10-C15-C14	-172.42 (12)
C2—C3—C4—C5	109.94 (13)	C11—C10—C15—Cl2	-178.86 (10)
O3—C3—C4—C5	-72.66 (14)	C2-C10-C15-Cl2	6.66 (18)
C2—C3—C4—C9	-121.62 (12)	C13—C14—C15—C10	-0.34 (19)
O3—C3—C4—C9	55.77 (15)	C13—C14—C15—Cl2	-179.44 (10)
O2—C4—C5—C6	-66.13 (13)	C3—O3—C16—O4	-14.1 (2)
C3—C4—C5—C6	-177.23 (10)	C3—O3—C16—C17	166.98 (11)
C9—C4—C5—C6	53.77 (14)	O4—C16—C17—C18	161.57 (15)
C4—C5—C6—C7	-56.48 (15)	O3—C16—C17—C18	-19.56 (18)
C5—C6—C7—C8	57.59 (15)	O4—C16—C17—C19	-14.7 (2)
C6—C7—C8—C9	-56.08 (15)	O3—C16—C17—C19	164.16 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11…O1 ⁱ	0.95	2.52	3.2470 (17)	133

			supplement	ary materials
C18—H18 <i>B</i> …O1 ⁱⁱ	0.95	2.56	3.4486 (17)	156
Symmetry codes: (i) $-x$, $-y+1$, $-z+2$; (ii) x	+1/2, -y+1/2, z-1/2.			